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Rate constant for thermal unimolecular reactions 
in intermediate collision cases 

S R Vatsya 
Centre for Research in Experimental Space Science, York University, Downsview, 
Ontario, Canada M3J 1P3 

Received 7 May 1982, in final form 8 July 1982 

Abstract. A procedure is developed to obtain converging bounds to the rate, at all 
pressures, of a thermal unimolecular reaction for which the corresponding relaxation 
matrix is represented as a linear combination of a weak-collision and a strong-collision 
rate matrix. A pair of bounds to  the rate is given in a closed form in terms of the matrix 
elements. The method is illustrated by a numerical example. 

1. Introduction 

The rate constant, yo, is defined to be the smallest eigenvalue of the matrix (L+D) 
where L is a relaxation matrix and D is a non-negative diagonal matrix of decay rates, 
representing a thermal unimolecular reaction. In two preceding papers (Vatsya and 
Pritchard 1981a, b) we studied the two limiting cases: the weak collision (Vatsya and 
Pritchard 198 lb )  and the strong collision (Vatsya and Pritchard 1981a), characterised 
by L = B and L = A respectively, where B is a real, symmetric tridiagonal matrix and 
A = p ( l - p o )  with p being a constant, proportional to the pressure. Here PO is the 
projection So(SO, ) where ( , ) denotes the scalar product and So is a normalised 
vector with ith element where Gi  is the Boltzmann equilibrium population of the 
state i. Thus the i, jth element of A is 

1/2 -112 
p(sI)-G8 n J  ), 

Also the lowest eigenvalue, zero, of B is simple with the corresponding eigenvector 
being SO (Pritchard and Lakshmi 1979) and the next eigenvalue is not less than p. In 
this paper we consider the case of ‘intermediate collision’ reactions represented by 

These matrices tend to exhibit severe bottleneck properties (Vatsya and Pritchard 
1981b) in the sense that yo is insensitive to variations in the elements Bij of B over 
quite wide ranges, but outside certain limits yo varies rapidly with variations of certain 
of the Bi,. It is impractical to explore these effects by numerical solutions of the 
eigenvalue problem. In this paper we develop a procedure to produce sequences 
converging to yo from above and below. These approximations are expressed explicitly 
in terms of Bii, which will greatly facilitate the task of correlating the behaviour of yo  
with variations of these elements. 
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2. Preliminaries 

In this section we consider the problem of approximating the lowest eigenvalue (TO 

of a real symmetric matrix [p  (1 - p o )  + C] with C 3 0. It is clear that (TO 2 0. It will 
be assumed that v0 < p,  and the trivial case (TO = 0 will be excluded. 

Let $o be an eigenvector of [p  (1 - p o )  + C] corresponding to the eigenvalue go. 

The eigenvalue equation reads 

(1) 

and (So, i,b0)#0, otherwise c 0 2 p  or $ o = O .  It now follows that the eigenspace 
corresponding to r0 is spanned by the single vector (p  + C - (To) -~SO;  hence (TO is a 
simple eigenvalue. We define functions q5(x), &(x) and x ( x )  on (-CO, p )  as 

(p  + c - ( T O M 0  = CLSo(S0, $0) 

q 5 ( ~ ) = ~ ~ ~ o , ~ p + ~ - x ~ - 1 s ~ ~  (2a 

& ~ ~ ~ = ~ ~ ~ o , ~ ~ + ~ - ~ ~ - l ~ s o ~  

=p(So, ( p  +C-x)-’So) 

(p  -x)(So, (p  +C-x)-’So) 
1 - (So, (p  + c - x ) -ISo)  

- - 

where So = C1/’S0. Since C 3 0, C”’ is well defined. In lemma 1 we show that these 
functions determine (TO uniquely. 

Lemma 1. Let (TO, q5(x), &(x) and x ( x )  be as above. Then c0 is the unique zero of 
(q5(x) - l), and the unique fixed point of &(x) and x(x)  in (-00, p ) .  

Proof, The fact that 4(ao) = 1 follows from (1) using the invertibility of ( p  +C -ro) 
and (SO, $ 0 )  # 0 for m0 < p.  

It is clear from ( 2 a )  that q5(--c0) = 0, 4 ( x )  3 0  for x in (-00, p )  and 

4 ’ (x )  =d4(X)/dx =p(So,  (p  + C -x)-’So) 3 0. 

In fact q5’(x) # 0 since the equality implies that So = 0. Thus q5 (x) is a strictly increasing 
function. Therefore q5(x) = 1 can have at most one solution. 

It is straightforward to check that d ( x )  = 1 if and only if &(x)  = x and x(x)  = x. 
We have already observed that q5’(x)>O. By the same argument we have that 

4”(x) > 0. Furthermore, &’(XI and &“(x) are positive and ~ ’ ( x )  and x”(x) are negative 
unless SO = 0. But C1”So = 0 implies that [ p  (1 - P O )  + CISo = 0, i.e. go = 0; thus this 
possibility is excluded. We state this result as follows. 

Corollary 1. The functions c$(x), & ( X I  are positive, increasing and convex on (-00, p )  
and x ( x )  is positive, decreasing and concave there. 
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In view of the results of lemma 1 and corollary 1, the iterative method may be 
used to obtain lower and upper bounds to u0 by way of approximating the fixed points 
of $(x) and ~ ( x ) .  Also Newton’s method may be used to obtain both the bounds by 
way of solving +(x)  = 1, 4 ( x )  = x and x ( x )  = x. We state these results in theorems 1 
and 2. 

Theorem 1. (The iterative method.) 
(i) Let x o s a o  and x,,1 = $(xmL m = 0 , 1 , 2 , .  . . ; then Xmt(+O.  

(ii) Let p > x o  ago and x ,+~  = q5(xm), m = 0,1 ,2 ,  . . . ; then X , ~ O .  

(iii) Let x , + ~  = x(xm), m = 0, 1 ,2 ,  . . . , with xo < p such that 0 < xm < p,  m > 0. 
Then x 0 s  go implies that x z m t y o  suo< ylJxZm+l .  If xo Suo then the bound properties 
are reversed. 

Proof. For (i) and (ii) see Vatsya and Pritchard (1981a) and theorem 2 of Singh (1981). 
For (iii) see theorem 1 of Vatsya and Pritchard (1981b). 

It may happen in theorem l(iii), if X O < ~ O  (xO>vo), that Y O < ( T O < Y I  ( Y O > ( T O > ~ I ) .  

The sequences convergent to the fixed point of x(x)  may, however, be found by using 
the min-max method (Vatsya 1981). To be precise, let xo<p ,x (x0)=x1<p .  It 
is obvious that fo = min(xo, xl)  suo< max(xo, xl)  = f1. Pick some positive E < 1 
and let U ,  = (1 - E ) f Z m  + E ~ z , + I ,  fzm+2=ma~(fzm,  min(a,, x ( U m ) ) ) ,  f Z m + 3 =  

min(,fzm+l, max(a,, ~ ( a , ) ) )  for m = 0, 1 , 2 , .  . . . Then f 2 m + 1 J ( ~ 0 t f 2 m .  

Theorem 2 may be deduced by arguments similar to theorem 1. Therefore we 
state the results without proof. 

Theorem 2. (The Newton method.) 

p ; then x,Jcro. 
(i) Letx,+l=x,+(1-~(x,))/q5’(x,), m = 0 ,  1,2 ,  . . . ,  wi thxo<p  suchtha tx l<  

(ii) Let x o s c r 0  and xmil = ($(xm) -xm$’(xm))/(l -$’(x,)), m = 0, 1 , 2 , .  . . ; then 

(iii) Let x,+~ = ~ ( x m ) - x m x ’ ( x m ) ) / ( l  -,y’(xm)), m = 0, 1 , 2 , .  . . , with x o < p  such 
X m t u O .  

that x1 < p ;  then x m b o .  

The information required in theorems 1 and 2, as well as in the min-max method, 
in order to determine the sequences of bounds to (TO, is covered by the functions q5(x), 
&(x), ~ ( x )  and their derivatives for an arbitrary x < p .  As is clear from equations 
(2a)  to (2c), knowledge of q5(x) and q5’(x) is sufficient, which is determined by 

It is pertinent to remark that the condition (+o < p can be relaxed. It is obvious 
that is less than or equal to the lowest eigenvalue of (p + C). If u0 is not necessarily 
less than p,  then the above results on q5 (x) are still true. Thus (TO can be approximated 
using theorem 2(i). However, since theorem 2(i) yields upper bounds to go, it also 
provides a means to check if theorem 2(ii), (iii) are applicable to a particular problem. 
In the following, as above, we assume that ao<p;  the modifications for the other 
case are straightforward as explained here. 

P ( x )  = (p  +c-X)-’so. 

3. Approximations to yo 

The rate constant yo is defined to be the smallest eigenvalue of the matrix [(l- [ ) p  (1 - 
PO) +tB+D]= p(1 -po)+C, where C = ((6 - p  +pp~)+D,  0 s [  s 1. The cases [ = 0 
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and ( = 1 represent the strong-collision and weak-collision cases, respectively. Here 
D is a non-negative diagonal matrix and B is a real, symmetric tridiagonal matrix. 
Further, the lowest eigenvalue zero of B is simple with the corresponding eigenvector 
So; the next eigenvalue is greater than or equal to p. 

Since an arbitrary vector 4 # 0 can be written as 4 = aso + $ with some constant a 
and (So, 4) = 0, we have that 

Thus C F 0 and we assume that yo < p.  Now, the results of Q 2 are applicable and 
the problem has been reduced to determining p ( x )  where 

P ( x )  = (p  + c -x)-'so 

= (T + 5ppo)-'So 

= T-'( l  +(p~oT-')-~So 

whenever T-' = (p  +(B-(p + D-x)-' is defined. However, T is non-invertible pre- 
cisely for one value of x in (-CO, p )  which we show in lemma 2 where we propose a 
remedy as well. 

Lemma 2. The matrix T(x) has a zero eigenvalue if and only if d ( x )  = (-'. At 
x = C$-'((-'), C $ ' ( x )  = (8, 8)/pe2(So, 8)' with an arbitrary 8 such that Te = 0. 

Proof. If there is a vector 8 # 0 such that TO = 0, x < p,  then as in lemma 1, 

e = ( p ( p  + c - ~ ) - ' s ~ ( s ~ ,  e )  
and (So ,  e )  # 0. It is now clear that T8 = 0 implies that q5(x) = 6-l. Conversely, if 
q5(x) = (-I ,  then the vector (p  + C -x)- 'So # 0 is easily seen to be an eigenvector of 
T with the corresponding eigenvalue being zero. 

It is also clear that the zero eigenvalue is simple, i.e. if T8=0 then 8= 
k (p + C - x ) - ' S o  with some k # 0. In fact k = p (SO, 8)/q5 (x) = (p (So ,  8). Con- 
sequently 

4'(x)=CL(So, (CL +c-x)-2so) 

Thus if T-' does not exist then 4 ( x )  and q5'(x) are as given in lemma 2 and if it 
does, the same functions are obtained by using (3). 

The matrix T is an irreducible real symmetric matrix of order n. Hence all of its 
eigenvalues are simple. Let a be a vector with components ai, i = 0, 1, . . . , (n  - 1) 
such that ( y o =  1, = -Too/Tol, ( ~ i + l =  -(Tii-lai-1 +Tjiai)/Tji+l for i = 1,2 ,  . . . , (n  -2). 
Since T is irreducible, none of the elements adjacent to the diagonal in T is zero. 
Now, let cy, = -(T,-I n-2a,-2+T,-1 n - l a n - ~ ) ;  it is straightforward to check that T has 
a zero eigenvalue if and only if a, = 0 (see also Pritchard and Vatsya (1982), lemma 
6). Thus if a, = 0 then 4(x)  and q5'(x) are determined by lemma 2; if a, # 0 then T 
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is invertible. In the latter case, let f = T-'g with an arbitrary n- vector g. As a corollary 
of theorem 2 of Pritchard and Vatsya (1982), we have that 

aiakgk n-1 j 

j = i  k = O a , Q j + l q  j + l  
h = - C  c i = 0,1, . . . , (n  - 1) (4) 

where Tn-l ,, =Tn n-l = 1. 
It is pertinent to remark here that the above result may be directly obtained 

relatively easily following the same steps. Another, even more explicit form of f is 
given by equation (12) of Pritchard and Vatsya (1982): 

where P j ( A )  are the Jacobi polynomials given by 

Po(A) = 1 P1(A) = A  -Too Pk+i(A)=(A -Tkk)Pk(A)-TZk-i k P k - i ( A )  

k = 1 , 2 , .  . . , (n -1). 

From (2a) and (3)  it follows for x f c#-'([-'), that 

where N ( x )  = p (So, ( p  + [B - [p  + D - x)-'S0). Using ( 5 )  this reduces to 

We have used the symmetry of B, and Fi+l(0) = Pi+1(0)/Pi(O), i = 0 ,  1, . . . , n - 1, are 
given by 

Pi(0) = x - (1 - 5 ) ~  -[Boo- Doo 

F,+l(O) = [X - (1 -[)/A - [B,i - Dii] - [*B;-i i/P;(O). 

If yo is small in comparison with the other eigenvalues, the lower bound &(O) and 
the upper bound x (0 )  are expected to be quite close. Thus the rate constant yo may 
be approximated satisfactorily by using the inequality 

Yo 

In cases where &(O) and ~ ( 0 )  are not close enough, further iterations may be necessary 
to obtain the degree of accuracy desired. 
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4. Numerical illustration 
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This method was implemented for the model calculation on the thermal dissociation 
of COz at 4000 K which was described by Vatsya and Pritchard (1981b); the value 
of p was taken to be ( A 1 - & )  where A I  is the smallest non-zero eigenvalue of B and 
E was of the order of lO%I. Upper and lower bounds, as given by (7), were calculated 
for 6 = 0 ,  0.25, 0.5, 0.75 and 1.0 and were found to be indistinguishable to at least 
five significant places for the whole range of pressures from 1 Torr to lo9 Torr. The 
method is quite efficient, taking less than ten seconds of computing time in a contem- 
porary mainframe computer for 27 values of pressure and all values of 6. Only the 
results for four values of 6 are shown in figure 1, as the curve for 6 = 0.75 lies very 
close to the weak-collision curve, i.e. 6 = 1. The strong-collision curve lies below the 
weak-collision curve, because w is close to the smallest eigenvalue of B; therefore 
the relaxation described by p (1 - p o )  is rather slower than that described by B. 

-4L 1 I I 1 I I I I 1 

0 2 4 6 8 
I Q  P ( T o r r )  

/ 

Figure 1, Model calculation for the fall-off in the dissociation of COz at 4000 K, using a 
relaxation matrix of the form [ (1 - [ )~ (1  - p o ) + @ ] .  

The present method is superior to the one given earlier (Vatsya and Pritchard 
1981b) not only in accuracy but also in speed and simplicity. Further, (6) shows the 
dependence of N ( x ) ,  and hence that of the approximations to yo, on Bij and 6 quite 
explicitly, making the method suitable to explore this dependence. 
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